Deep Learning: Fundamentals, Theory and Applications


More complex computing approaches have grown in popularity as technology has improved and big data has emerged. Increasing customer demand for better goods, as well as firms trying to better exploit their resources, have been driving this trend. Machine learning is a field that combines statistics, mathematics, and computer science to create and analyze algorithms that improve their own behavior in an iterative fashion by design. Initially, the discipline was committed to the development of artificial intelligence, but owing to the constraints of theory and technology at the time, it became more reasonable to concentrate these algorithms on particular tasks. Deep learning is a sort of machine learning and artificial intelligence (AI) that mimics how people acquire certain types of knowledge. Deep learning is a critical component of data science, which also covers statistics and predictive modeling. Deep learning is particularly advantageous to data scientists who are responsible with gathering, analyzing, and interpreting massive volumes of data; deep learning speeds up and simplifies this process. In this book the concept of deep learning under the machine learning is explained in every aspect. Whether, it’s their fundamental concepts or the application of deep learning on daily basis.
Name of Author

Dr. R. Kanagaraj, Dr. A. Kumaresan, Ms. Ruchika, Dr. SK Althaf Hussain Basha

ISBN Number



There are no reviews yet.

Be the first to review “Deep Learning: Fundamentals, Theory and Applications”

Your email address will not be published. Required fields are marked *

Shopping Cart